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The Hilbert phase ¢(r) of a signal x() exhibits slips when the magnitude of their successive phase difference
|p(t;,1)— ¢(2;)| exceeds . By applying this approach to periodic, uncorrelated, and long-range correlated data,
we show that the standard deviation of the time difference between the successive phase slips A7 normalized
by the percentage of slips in the data is characteristic of the correlation in the data. We consider a 50 X 50
square lattice and model each lattice point by a second-order autoregressive (AR2) process. Further, we model
a subregion of the lattice using a different set of AR2 parameters compared to the rest. By applying the
proposed approach to the lattice model, we show that the two distinct parameter regions introduced in the
lattice are clearly distinguishable. Finally, we demonstrate the application of this approach to spatiotemporal
neonatal and fetal magnetoencephalography signals recorded using 151 superconducting quantum interference
device sensors to identify the sensors containing the neonatal and fetal brain signals and discuss the improved

performance of this approach over the traditionally used spectral approach.
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I. INTRODUCTION

A model free time series analysis [1] approach is suited to
characterize the dynamics of a system without the knowl-
edge of the underlying details of the dynamical equation. In
most applications, the main objective of time series analysis
is to classify the system into one of its possible different
dynamical states. Here, we propose a method based on Hil-
bert phase to characterize the dynamics of the system. Prac-
tically, there are several advantages in characterizing the sig-
nal by studying the phases rather than the amplitude since
the phase is always bounded between —m and . Several
bivariate and multivariate analyses based on Hilbert phase
have been introduced to understand the nature of coupling
between two or more signals [2-4]. Further, several univari-
ate approaches based on the phase of a signal have been
proposed to study the synchrony between two or more sys-
tems [5,6]. The investigation of synchrony between the sig-
nals from their phases, especially in spatiotemporal systems
[7], localizes the connection-interaction better than the con-
ventional coherence measure as the latter suffers due to the
mixing property [8] (a property related to smearing of am-
plitude of a region to neighboring regions). In this work, we
perform a univariate analysis of the Hilbert phase of a signal.
Precisely, we characterize the dynamics of the signal by the
standard deviation of the time difference between the con-
secutive phase slips that occur when the magnitude of the
phase difference exceeds the value of 7 and normalize this
quantity by the percentage of slips in the given data.

The paper is organized as follows: in Sec. II we explain
the procedure of phase slip analysis using a sine wave; we
demonstrate the application of this approach in characteriz-
ing white noise and long-range correlated noise and show
that the Hilbert phase is characteristic of the correlations in
the data. In this work, we plan to use this approach to iden-
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tify the neonatal and fetal brain signals embedded in high-
dimensional data. Prior to this, we test it by simulating a
lattice and modeling each lattice point by a second-order
autoregressive (AR2) process. By applying the current ap-
proach to AR2 lattice, we show that the phase slip analysis
correctly distinguishes the two distinct parameter regions in-
corporated in the lattice. Finally, using this approach we
identify the neonatal and fetal brain signals embedded in
spatiotemporal magnetoencephalographic (MEG) data mea-
sured using a 151 superconducting quantum interference de-
vice (SQUID) system.

II. METHODOLOGY OF PHASE SLIP ANALYSIS
A. Hilbert transform and Hilbert phase

To demonstrate the methodology of phase slip analysis,
we consider a sine wave, x(¢) =sin(27¢/40), sampled at 4 Hz
for a period of 100 s. For the signal x(z) the Hilbert transform
h(t) is defined by the following convolution integral:

h(7) = 71—7me %dr, (1)

—00

where P denotes Cauchy’s principal value. The signal to-
gether with its Hilbert transform can be represented as a
complex analytic signal a(t)=x(t)+ih(t), where i=\—1. Us-
ing the complex signal a(r), the Hilbert phase is defined as
o(t)=tan"'{h(7)/x(¢)} and thus Hilbert transform allows us to
study the instantaneous phase of the signal. Though Hilbert
transform based approach is commonly used to capture the
phase of a signal, another definition also exists to quantify
the phase. If the trajectories (irrespective of whether they are
obtained by the numerical simulation of the dynamical equa-
tions or reconstructed from the time series) of a dynamical
system display rotations in the phase space, then one can
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define an appropriate plane and study the crossing of the
trajectories with the plane. Based on the time between suc-
cessive crossings, one can define the phase of the trajectory.
This approach is used to study the phase synchronization in
low-dimensional chaotic system [9-11]. However, for bio-
logical signals such as neonatal and fetal brain waves as
studied in this work may not confine to a low-dimensional
phase space and hence it will be difficult to define the phase
using this approach. Therefore, in this work we define the
phase using the Hilbert transform approach. However, all the
different approaches capture the instantaneous period of the
dynamics.

B. Generalized Hilbert transform

The convolution integral Eq. (1) basically introduces a
phase shift of —r/2 to the signal x(¢). That is, if we represent
the Fourier transform [P (w)] of x(¢) as r(w)e'™ then the
Fourier transform [Py(w)] of h(r) will be r(w)e! @2
Based on this relation, one can numerically compute A(r)
retrospectively by introducing a desired phase shift of —7/2
to the Fourier phases of the original signal.

This definition can further be generalized by introducing
any desired phase shift ¢ to the Fourier phases of the given
signal x(7) as follows: h()=F {P (w)e“*°)}, where F~'{.}
denotes the inverse Fourier transform operation. We define
h(t) as the generalized Hilbert transform of the signal x(z)
and if ¢ takes on a value of —/2, h(r) becomes equal to A(z).

Numerically, one can compute 4(f) by multiplying the Fou-
rier phases of a signal with desired phase shift . To this
end, an inverse Fourier transform is applied to bring the sig-
nal back to time domain.

C. Characterization of phase slips

Based on the above arguments, the Hilbert transform of
sin(27t/40) is sin(27t/40—1/2)=—cos(27t/40). Thus, for a
sine wave with frequency w, the Hilbert phase can be deter-
mined analytically ¢(z)=wt— /2.

In this work, a(n) is computed numerically using the
“Hilbert” function in MATLAB (Mathworks Inc., Natick, MA,
USA), where r=n/s and s is sample frequency and n is the
sample number. A portion of the simulated sine wave and the
Hilbert phase ¢(r) are shown in Fig. 1. The time difference
between the successive phase slips 7" is also shown in Fig.
1. In order to better understand this result, we consider the
phases computed for thiiase c=m. It is easy to infer from

the above definition of A(z) that this value of the phase shift
will flip the signal polarity and the analytic signal will be
a(t)=x(tr)—ix(z). The corresponding Hilbert phase and the
time between the successive phase slips 72 are also pre-
sented in Fig. 1. For the case c=—m/2, the phase slip occurs
when the signal passes through a minimum and for c¢=1r the
phase slip occurs when the signal passes through zero. Thus,
the Hilbert transform with a phase shift of 7 can be thought
of as a zero-crossing detector which is traditionally used in
signal processing to capture the dominant frequency of the
signal [12]. Further, for the case of —ar/2 the phase slip
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FIG. 1. Demonstration of phase slip analysis using a sine wave
with a periodicity of 40 sampled at 4 Hz. The dashed line and
dot-dashed line indicate the results of phase slip for c=7 and —7/2,
respectively. There is a difference of 7" sample points (corre-
sponds to the periodicity of the sine wave) between the consecutive
phase slips for ¢=—/2 scenario and a difference of 72 sample
points (corresponds to half of the periodicity of the sine wave) for
c=1r case. The solid line at zero running parallel to abscissa is a
guide for the eyes.

duration (7)) corresponds to a complete cycle of the signal;
while for the case of r, it (7?)) corresponds to the half of the
cycle of the signal. Thus, by studying the time between the
successive Hilbert phase slips we can infer the periodicity of
the signal. In this work, the time difference between the suc-
cessive phase slips is defined as A7(i)=7(i+1)—7(i). To this
end, we define a measure p to quantify the dynamics of the
system by computing the ratio of the standard deviation of
the successive time differences o(A7) of the Hilbert phase
slips to the percentage of slips in the data (which is the
number of slips divided by the total number of points in the
data). Based on the above arguments, it is straightforward to
infer that for periodic signals p is zero ['."o(A7)=0]. By
computing the histogram of A7, it is possible to study the
spectral property of the signal and this was used in earlier
work to quantify the spectral property of atmospheric vari-
ables [13]. Thus, using Hilbert phase slip analysis, it is pos-
sible to study the time-dependent variations in the frequency
of a signal whereas the Fourier transform characterizes the
global frequency of a signal.

In order to compare the sensitivity of the Hilbert phase
slip method to noise for c=—m/2 and c=m, we consider a
noisy sine wave signal. We use the sine wave discussed
above and simulate it for a period of 5 min with a sampling
rate of 4 Hz. We also generate Gaussian distributed white
noise series r with the same duration as the sine wave. We
remove the average value of r and normalize its peak ampli-
tude (to [-1,1], same range as sine wave). We then add
different amounts (e) of the modified white noise series to
the sine wave and compute 7" and 7?. In our simulation,
we vary € from 0.02 to 1 in steps of 0.02. The case of noise-
free scenario (e=0, discussed above) serves as a base for
comparison.
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FIG. 2. Results of the performance analysis of two different
phase slip (c=—m/2 and ) versions shown in Fig. 1. The perfor-
mance measure is shown as a function of the noise level €. The
traditional Hilbert phase slip approach identifies approximately
80% of the cycles in the data correctly even when the noise level is
equal to the signal level while the zero-crossing version identifies
only 20% of the cycles in the data.

We define the performance measure as the ratio of the
number of cycles correctly identified to the number of cycles
expected. The number of cycles expected for the sine wave is
calculated from the noise-free scenario. The additive noise
will interfere and will change the expected values of 7" and
72 (which are 160 and 80 samples, respectively). To account
for this variability, we consider a cycle to be correctly iden-
tified if its length is within the interval of (1 £ 1/8)7. With
this definition the performance measure will be equal to 1 if
the method correctly identifies all the cycle lengths and will
be equal to O if it does not identify any cycle length correctly.

The performance measures computed from both versions
are shown in Fig. 2. It is clear that with c=—7r/2 version, one
can identify the periodicity of the sine wave correctly even
up to €=0.7. Further, even with equal amount of noise (e
=1), the c=—m/2 version identifies 80% of the cycles in the
signal. Thus, the phase slip analysis with traditional Hilbert
transform identifies the periodicity of the signal even in
noisy situations. Though the results shown in Fig. 2 are de-
pendent on the interval within which the cycle length is con-
sidered correct, the nature of the conclusion demonstrated in
Fig. 2 will still remain the same even for a different accep-
tance interval. Based on this simulation result, we will use
c=-m/2 to study the dynamics.

III. APPLICATION TO UNCORRELATED AND LONG-
RANGE CORRELATED PROCESSES

In this section, we apply the phase slip analysis to uncor-
related and long-range correlated data to understand how ef-
fectively the method distinguishes different types of correla-
tions. Long-range correlation (LRC) is observed in many
systems ranging from DNA sequences [14], heart rate dy-
namics [15], and atmospheric temperature data [16]. The

PHYSICAL REVIEW E 80, 046213 (2009)

a 10t

1
p

FIG. 3. Variation in p for uncorrelated and long-range correlated
data with the magnitude of correlation dictated by the power spec-
tral exponent (3. The circles represent the mean value of p from 15
different realizations of a process with exponent 8 and the error

bars indicate one standard deviation. In each realization 10° data
points are used.

power spectrum S(f) of LRC data follows a power law:
S(f) ~ f=#, where f is the frequency and 3 is the power spec-
tral exponent. 3 is equal to zero for uncorrelated data while it
is positive for LRC data and negative for anticorrelated data.
LRC data can be synthesized retrospectively using the Fou-
rier filtering approach by introducing the desired correlation
to Gaussian white noise in the Fourier domain as follows:
FY{P(f)fP?}, where P(f) is the Fourier transform of the
Gaussian white noise [17]. In this work, we synthesize dif-
ferent data sets with B ranging from O to 2 in steps of 0.2.
For each 8 we synthesize 15 different realizations and apply
phase slip analysis. The mean value of p from all the differ-
ent realizations and the standard deviations are shown in Fig.
3 as a function of .

It is evident from Fig. 3 that Hilbert phase analysis is able
to clearly distinguish different types of LRC data with 8
ranging from O to 1.2. For B value 1.3 and above there is a
considerable overlap between them. For these values of 3 the
data fall into the realm of nonstationary. As Hilbert transform
is computed using Fourier based approach, the latter cannot
perform better on the nonstationary data. Thus, the Hilbert
phase is not well definable for these data sets and hence the
approach is not able to clearly distinguish them. Based on the
return interval analysis, LRC data can be thought of as clus-
ters of small and large fluctuations [18]. The return times of
these clusters increase with the increase in the magnitude of
correlation (i.e., B). The case of white noise is a high-
frequency process and hence will have large number of slips
in a given period of time. Therefore, the time interval be-
tween successive phase slips will be short and the p will be
small. However, for larger correlations (8), low-frequency
components will dominate and the time interval between
successive phase slips will increase and we will observe a
positive trend of p versus 8 dependence.
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FIG. 4. (Color online) Results of the phase slip analysis of AR2
process on a square lattice. (a) A 50X 50 square lattice in which
each lattice point is modeled as AR2 process. The lattice points
marked with thin dots and circles are modeled with (a;=1.35,a,
=-0.14) and (a;=2,a,=-0.98), respectively. For each lattice point
we simulate 10° points. (b) Contour map of p of the AR2 process
from each lattice point. Phase slip analysis clearly distinguishes the
two distinct AR2 processes introduced in the lattice.

IV. APPLICATION TO SPATIOTEMPORAL AR2 LATTICE
MAP

In this work we apply the phase slip analysis to the spa-
tiotemporal neonatal and fetal magnetoencephalography
(MEG) data. Hence, we first test this approach on a simu-
lated spatiotemporal system. For this purpose we consider a
50X 50 lattice and model each lattice point by an indepen-
dent AR2 process. Traditionally, an AR2 process has been
thought of as a stochastic harmonic oscillator characterized
by two parameters, the periodicity 7 and the decay time 7.
Mathematically an AR2 process y is defined as follows:
ylnl=a,y[n—1]+a,y[n—-2]+ nn], where 7 is the Gaussian
white noise, which drives the system. a; and a, are the pa-
rameters of AR2 process and are defined as follows: a;
=2 cos(2m/T)e™ V" and a,=e~?'".

The AR2 process has been traditionally used to model the
biological systems such as tremors [19], brain dynamics
[20-22], and atmospheric variability [23]. Here we model
the lattice points using the AR2 model with 7=1 and T=1,
which we define as scenario 1 and a subset of lattice points
using 7=80 and 7=80, which we define as scenario 2 and
these are shown in Fig. 4(a). The primary objective of this
simulation is to mimic a spatiotemporal setting analogous to
our multichannel sensor environment involved in acquiring
fetal and neonatal brain signals.

Phase slip analysis is performed on the data from each
lattice point and the result for the lattice model is given in
Fig. 4(b). The two scenarios that are modeled with different
sets of parameters are clearly distinguished. In scenario 1,
the parameters are close to zero and the AR2 has character-
istics of white noise while in scenario 2 the parameters are
largely deviated from zero and hence AR2 has strong oscil-
latory characteristics. Based on the above arguments and
from the knowledge of the phase slip analysis of short and
LRC data (see Fig. 3), one would expect a low p for scenario
1 compared to scenario 2 and this is observed in our simu-
lation [see Fig. 4(b)]. It is important to note that the unit of
A7 is in steps for the LRC and white noise data and for the
AR2 data as well and hence p is in the units of (iteration)
steps whereas when applied to continuous system the unit of
A7 will be in seconds and hence the unit of p will be in
seconds.
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V. APPLICATION TO NEONATAL AND FETAL MEG

In this section, we apply the phase slip analysis to spa-
tiotemporal neonatal and fetal MEG data to localize the sen-
sors containing the spontaneous brain activity (SBA). Neo-
natal and fetal MEG is recorded using an instrument called
SARA (SQUID Array for Reproductive Assessment), which
is designed and installed at the University of Arkansas for
Medical Sciences specifically to study the maternal-fetal
electrophysiology. This instrument is completely noninvasive
and detects weak biomagnetic fields associated with the elec-
trophysiological activity in the human body [24]. SARA is
equipped with 151 primary magnetic sensors with an ap-
proximate distance between the sensors of 3 cm and spread
over an area of 1300 cm?. The sensor array spans the mater-
nal abdomen longitudinally from the symphysis pubis to the
uterine fundus and a similar distance laterally.

Traditionally, fetal brain evoked response is used to un-
derstand the neurological maturation of the fetus [25,26].
Typically in fetuses, for an auditory and visual response
study using SARA, an ultrasound measurement is performed
prior to the study to locate the fetal head position and the
same is marked using a coil (head coil) attached to maternal
abdomen. Based on this measurement, the distal end of the
(auditory or visual) stimulator is placed on the maternal ab-
domen in the area overlaying the fetal head. As most of the
evoked responses are confirmed by visual inspection, the
knowledge of the fetal head region gained through ultra-
sound measurements will also help to trace the evoked re-
sponses around the same region in the sensor domain
[25,27].

In addition to the evoked response, the neurological matu-
ration can also be studied with the SBA [28]. The classical
patterns in SBA such as tracé alternant (TA), continuous, and
tracé discontinuous patterns are indicative of sleep-wake
cycles that change with gestational age [29] and help to un-
derstand the neurological maturation. The feasibility of mea-
suring SBA and identifying these classical patterns in new-
borns [30] and fetuses [31] using SARA have been
demonstrated recently. In the case of an evoked response
study, the response from a sensor that overlaps with the ul-
trasound measurement provides a secondary confirmation
that the response is of cortical (brain) origin. However, in the
case of SBA, a larger group of sensors that may contain the
fetal brain signals is selected based on the ultrasound mea-
surement. The brain patterns are usually scored by visual
inspection and the scoring process is more difficult if the
scorer has to deal with many sensors. Thus, an automated
approach that limits the number of possible sensors that may
contain the SBA will make the scoring process easier. We
propose to use the phase slip analysis to identify the sensors
that may contain SBA.

Our problem is to distinguish the sensors that contain
SBA from others in the noise floor. However, we would like
to mention that the MEG channel noise (which is sensor
noise plus environment noise) will not have the same broad-
band spectrum as the computer generated white noise (that
are discussed in Figs. 3 and 4). Further, the preprocessing
steps such as a digital filter will change the spectral property
of the channel noise. In the case of fetal MEG, the environ-
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FIG. 5. (Color online) Results of the phase slip analysis of neonatal and fetal MEG data presented on the SARA sensors. A contour plot
of p of the neonatal and fetal MEG is shown in (a)—(e) and (f)—(j), respectively. The phase slip analysis clearly highlights the sensors
overlaying the (neonatal-fetal) brain area. In (f)—(j), the fetal head region marked using ultrasound is shown as a white dot. For the sake of
clarity, the results are presented in different magnitudes. For each data an estimate of p for background is obtained by calculating the median
value of p obtained for the signals from the sensors on the boundary of the SARA system and this value is set as a lower bound in each map.
The distance from top to bottom of each graph is 45.3 cm and the distance between the widest section of the graph is 33.3 cm.

mental noise includes other biological signals that are perti-
nent to the fetal development such as maternal and fetal
breathing, maternal-fetal cardiac signals, uterine contrac-
tions, etc. The breathing artifacts and the uterine contractions
are low-frequency processes and can be attenuated using ap-
propriate (low-pass) filter. The cardiac signals are attenuated
using signal space projection (SSP) technique [32]. If the
intensity of the interfering source is minimal and stationary
(e.g., includes minimal to no fetal motion during the record-
ing) then they are attenuated properly or else the partially
attenuated interference will contribute to the MEG channel
noise [33]. The MEG channel noise is commonly called
background activity. Hence, our actual problem is to distin-
guish the sensors that contain SBA from the sensors that
contain background activity.

In the case of newborns, the sensors on which the new-
born head is rested can be easily determined during the study
(usually middle and lower sensors) and hence the SBA analy-
sis can be restricted only to those sensors. Thus, neonatal
MEG data can serve as a good test bed for our algorithm
before we apply it to the fetal MEG data. We consider five
neonatal MEG data. Further, we consider five fetal MEG
data recorded in the following gestational ages: 31 week, 33
week, 34 week, and two in 36 week. For details of the re-
cording procedure we refer elsewhere [25]. MEG is collected
using SARA with a sampling rate of 312.5 Hz for a period of
6 min. The interfering cardiac signals are removed by the
SSP technique [29,30] and the data are band pass filtered
(0.5-25 Hz) [30] using the Butterworth filter with zero phase
distortion.

Phase slip analysis is performed for the MEG from each
SARA sensor and the p computed is shown on the SARA

sensor domain as a contour map (see Fig. 5). Figures
5(a)-5(e) represent the results of the neonates and Figs.
5(f)-5(j) represent the results of the fetal data sets. In the
case of neonates, after the removal of the cardiac signal, the
dominant signal left will be the brain activity. Hence, one
would expect the signals to be localized only over a few
sensors on which the neonate head is positioned and the rest
of the sensors to be populated with signals due to the back-
ground activity, which in the neonatal case is just SARA
noise floor (usually less than 5f7/\Hz).

As the neonatal brain signals are shown to be a band
limited process (0.5-25 Hz) exhibiting spectral (8, 6, «, and
B) activities [34], the sensors containing brain signals are
expected to show higher p values compared to the rest
(analogous to AR?2 lattice scenario). This is indeed observed
for all the neonatal data [see Figs. 5(a)-5(e)].

Fetal MEG is more complicated than neonatal MEG. Fe-
tal MEG measured using SARA is a superposition of
maternal-fetal cardiac signals and fetal brain activity. As
mentioned above, it will contain other biological signals that
are related to the fetal development. The dominant interfer-
ence is caused by fetal motion. If the fetal motion during the
SARA study is large, the fetal brain signals will be dispersed
to a large number of sensors.

A fetal movement study is often done using an ultrasound
measurement. With the current technology it is difficult to
perform an ultrasound measurement in parallel to the SARA
study [35]. However, it is possible to understand the fetal
movement by analyzing the fetal heart rate and actogram,
which is the variation in R-wave amplitude, a dominant com-
ponent of cardiogram, with time [36]. This analysis can be
readily performed using the fetal cardiogram, which is ob-
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FIG. 6. (Color online) Results of the power spectral analysis of neonatal and fetal MEG data presented on the SARA sensors. A contour
plot of the median value of spectral power in 0.5-25 Hz of the neonatal and fetal MEG is shown in (a)—(e) and (f)—(j), respectively. In the
case of neonates, the phase slip approach and the power spectral yield similar results. However, for fetuses the power spectral approach
localized an incorrect region. In (f)—(j), the fetal head region marked using ultrasound is shown as a white dot. For the sake of clarity, the

results are presented in different magnitudes.

tained as a by-product in the SARA measurement. The acto-
gram and the fetal heart rate variability analyses confirmed
the presence of the fetal movements in the data sets dis-
cussed here. The actogram and heart rate are not presented
here as they are beyond the scope of the current work.

Because of this motion, we observe a larger spread of the
fetal brain signals in Figs. 5(f)-5(j). Further, similar to neo-
nates, fetal brain signals are also shown to be a band limited
process (0.5-25 Hz) [31] and hence the sensors containing
fetal brain signals are expected to have higher p values com-
pared to the rest [see Figs. 5(f)-5(j)]. Except for the fetus
shown in Fig. 5(h), the results of phase slip analysis in all
other fetuses qualitatively match with the sensor region
marked by the ultrasound measurement [shown in white dots
in Figs. 5(f)-5()].

In order to get an estimate of the phase slip metric (p) for
background activity of the SARA signals, one can collect
SARA data from nonpregnant women and perform the Hil-
bert phase analysis. However, the use of biological surro-
gates (mothers) has been questioned [37] and hence we fol-
low the data-driven approach. For this purpose we consider
the signals from the sensors on the boundary of the SARA
system. These sensors usually do not contain any signal per-
tinent to fetal brain activity. We compute median value of p
obtained for these signals and use it as the estimate of back-
ground activity. In Fig. 5, we set this value as a lower bound
for the contour map.

Based on the spectral property (limited to 0.5-25 Hz) of
the neonatal and fetal MEG data, it may appear straightfor-
ward to use the simple power spectral approach to identify

the sensors containing SBA. To examine this further, we
compute the median power in 0.5-25 Hz for all MEG sen-
sors and present the results in Fig. 6. Figures 6(a)-6(e) rep-
resent the results of the neonates and Figs. 6(f)—6(j) represent
the results of the fetuses. The results of neonates shown in
Figs. 6(b)-6(d) agree very well with the phase slip metric
shown in Figs. 5(b)-5(d). In Fig. 6(a) though the dominant
activity shown in the lower part of the sensor matches with
the results in Fig. 5(a), the spectral analysis has spuriously
identified activities in the top sensors [see Fig. 6(a)].

In general, the order of magnitude of SARA signals varies
as follows: closer to the maternal heart, the maternal cardiac
signals can be as large as 100 picotesla (pT); the fetal cardiac
signal can be as large as 10 pT at the fetal thorax position;
near the head region the fetal brain signals can be as large as
500 fT and the neonatal brain signals can be as large as 1000
fT. Based on these details, any measure that we use to quan-
tify the brain signals should yield a higher (or equal) value
for neonates than the fetuses. For fetuses, the phase slip met-
ric shown in Figs. 5(f)-5(j) is in the same range or lower
than the values exhibited by the neonates [see Figs.
5(a)-5(e)]. These results corroborate the above argument
based on the signal strengths of the fetal and neonatal brain
signals. However, the median value of the spectral power of
the fetal MEG shown in Figs. 6(f)-6(i) is larger than the
neonates. The result of the fetus shown in Fig. 6(j) is almost
in the same range as the neonates and in this case both the
phase slip metric and spectral results have localized almost
the same region while in the other fetuses the spectral ap-
proach has localized an entirely different region. The magni-
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tude of the strongest signals identified in Figs. 6(f)-6(i) is
too high to attribute them to fetal brain signals and hence
they must correspond to the fetal heart residue. The differ-
ence in the spatial locations of the strongest signals [see Figs.
6(f)—-6(i)] identified by the spectral approach compared to the
phase slip approach [Figs. 5(f)-5(i)] also supports the fact
that these locations correspond to fetal cardiac signals. Thus,
the fetal brain signals can be reliably identified using the
phase slip approach compared to the traditional spectral ap-
proach.

Qualitatively, the neonates have higher p values compared
to the fetuses (see Fig. 5) indicating that the MEG power in
neonates is higher than fetuses. However, the minimum
value of p in both groups varies between 0.4-0.5 s. To un-
derstand the performance range of our approach, we com-
puted the root-mean-square value of sensors that exhibited
the highest p in all the data sets reported in Fig. 5. This
analysis showed that the sensor signals should be in the
range of about 70 fT and above for this approach to be able
to detect it. This conclusion also agrees with the results in
Fig. 2, which loosely indicate that the Hilbert phase slip will
be able to correctly identify signals whose amplitude is
roughly comparable to the peak-to-peak noise amplitude. In
the present case, the peak-to-peak sensor noise amplitude is
approximately 100 fT, which is in rough agreement with the
70 fT amplitude estimated from the data.

To ascertain the SBA identified using our approach, we
present in Fig. 7 the neonate and fetal MEG traces, one each
from the regions of high and low p. These traces correspond
to the data sets shown in Figs. 5(a) and 5(j). It would be
difficult to distinguish (except for the amplitude) between the
SBA and signal in the noise floor of SARA if we presented
the traces from the whole study. Instead, we present the
MEG traces that contain TA activity (scored by the expert
neurologist) for a neonate and a fetus in Figs. 7(a) and 7(c),
respectively. Further, we also present Figs. 7(b) and 7(d) for
comparison of the data from a sensor that has low p in the
same time duration as shown in Figs. 7(a) and 7(c). The
traces shown in Figs. 7(a) and 7(c) have burst and quiescent
periods which are common features of TA while the traces
shown in Figs. 7(b) and 7(d) lack these characteristics indi-
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FIG. 7. (Color online) Time traces of MEG from the neonate (a),
(b) and the fetus (c), (d) discussed in Figs. 5(a) and 5(j), respec-
tively. (a) and (c) MEG traces from sensors with highest p. (b) and
(d) MEG traces in the same time duration as shown in (a) and (c)
but from sensors with lowest p. See text for details.

cating that they are not SBA. This clearly shows that our
approach is able to localize the SBA in fetal MEG.

VI. CONCLUSION

Using Hilbert phase analysis we could clearly distinguish
the dynamics of different types of data ranging from uncor-
related noise to color noise. Further, by applying to a spa-
tiotemporal AR2 lattice, we could demonstrate that the phase
slip analysis distinguishes two regimes that are modeled with
different sets of AR2 parameters. Finally, by extending this
approach to the neonatal and fetal MEG data, we have dem-
onstrated that this method is able to reliably localize the
(sensor) regions that contain the brain activity. In future
work, the brain signals identified using this approach will be
analyzed for the classical brain patterns in SBA to under-
stand the neurological maturation of the fetus. Further, the
generalized Hilbert transform introduced in this work may
open a lot of venues for theoretical advancements in the
field.
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